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We numerically calculate the drag on a sphere or a filament immersed in an incompres-
sible viscous monolayer or membrane on one, or between two, viscous infinitely deep
bulk phases. We show that contributions due to the Marangoni effect of the monolayer
or membrane account for a significant part of the total drag. Effects of protrusion of
objects into the three-dimensional fluids adjacent to the monolayer and membrane are
investigated. Known analytical expressions in the limit of a very viscous membrane or
monolayer are recovered by our numerics. A sphere in a membrane exhibits maximal
drag when symmetrically immersed with the equator coinciding with the membrane
plane. No discontinuity of the drag arises when the sphere is totally immersed into the
subphase and detaches from the monolayer. Effects of protrusion are more important
for objects moving in a membrane or monolayer of low surface viscosity. At large
surface shear viscosity protrusions must be larger than the length defined by the ratio
of surface to bulk viscosities to alter the drag on the object. Our calculations may be
useful for the measurement of hydrodynamic radii of lipid rafts in membranes and
for electrocapillary effects of spheres immersed in a surface.

1. Introduction
The use of colloidal particles as tracer particles for the investigation of the rheolo-

gical properties of interfaces has received considerable attention over the past decade.
Spherical particles have been immersed in Langmuir monolayers at the air/water
interface (Petkov et al. 1995; Forstner, Käs & Martin 2001; Forstner et al. 2003;
Sickert & Rondelez 2003, 2004; Fischer 2004), in lipid bilayers in the form of giant
vesicles (Dimova et al. 1999a; Dimova, Dietrich & Pouligny 1999b; Dimova et al.
2000), and in polarized biological cells where they were coupled to the plasma
membrane (Pralle et al. 2000). The colloidal particles exert forces on the three-
dimensional fluids and the interface that separates them. These forces lead to
mechanical responses of both the fluids and the interface in the form of three-
and two-dimensional flow and pressure fields acting back onto the particle. Analytical
and numerical calculations on the problem of a sphere moving in an interface have
been pioneered by Danov et al. (1995), who refined the work (Danov, Dimova &
Pouligny 2000). However, in their analysis Danov et al. (1995, 2000) consider only
viscous responses of the interface and neglect Marangoni effects. Marangoni stress
is a tangential surface stress generated by gradients in surface density of surfactants.
This stress becomes most pronounced in the limit of vanishing surface compressibility
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κsηaγ̇ � 1 (κs being the surface compressibility, η the three-dimensional viscosity, a

the radius of the object moving in the interface and γ̇ the shear rate). In this limit
the Marangoni effects are simply incorporated into the theoretical description by
approximating the surface or interface as incompressible.

Marangoni effects often dominate over viscous effects as has been theoretically
predicted by Saffman & Delbrück (1975), Hughes, Pailthorpe & White (1981) and
Stone & Ajdari (1998) and experimentally confirmed by Peters & Cherry (1982) for
proteins undergoing Brownian motion in membranes and by Klingler & McConnell
(1993), Schwartz, Knobler & Bruinsma (1994), Steffen et al. (2001), and Wurlitzer,
Schmiedel & Fischer (2002) for the motion of flat, circular objects embedded in a
monolayer. Indeed, for particles in the micron range and below, the approximation of
the monolayer (membrane) interface as an incompressible two-dimensional viscous
liquid is a good description of the behaviour of such monolayers (membranes), even
if the surfactant concentration in the interface is so low that the amphiphiles are in
a two-dimensional ideal gaseous phase.

Characteristic features of the incompressibility of the interface are logarithmic
correction terms in the translational drag coefficients both in the high and low
viscosity limits. Experiments evaluated with the formulae given by Danov et al. (1995,
2000) that lack these characteristics therefore lead to overestimation by an order
of magnitude of the surface viscosity (Petkov et al. 1995; Dimova et al. 1999a, b,
2000; Sickert & Rondelez 2003, 2004) or an underestimation of the hydrodynamic
radius of rafts (Pralle et al. 2000) to which the colloidal beads are coupled. Sickert
& Rondelez (2003, 2004) attempted to overcome the deficiencies by evaluating the
Brownian motion of colloidal beads in a monolayer using Danov et al.’s theory with
a renormalized bulk viscosity. However, there is no physical justification for such a
renormalization. To enable proper data evaluation of particle tracking experiments
correct formulae without the deficiencies mentioned above are needed. The present
work incorporates Marangoni forces into the treatment of a sphere immersed in a
monolayer or a membrane by solving the equations for an incompressible interface.
The work is a logical extension of the description of two-dimensional objects immersed
in a membrane given by Saffmann & Delbrück (1975), Hughes et al. (1981) and Stone
& Ajdari (1998) to three-dimensional objects that protrude into the three-dimensional
fluid and complementary to work of Stone (2005, personal communication) that solves
the problem as a perturbation series in the protrusion. The spheres in a creeping flow
can both translate and rotate. Both translation and rotation require a torque and
force that are proportional to a linear combination of the translational and angular
velocity of the sphere. It is the task of the current work to compute the constants of
proportionality, i.e. the translational, rotational and coupling drag coefficients, defined
in § 3 for objects incorporated in or near a two-dimensional interface of surface shear
viscosity ηs that is bounded by liquids of different or similar bulk viscosities η1 and η2.

2. Hydrodynamic drag on objects of arbitrary shape
Consider a solid three-dimensional object moving in a monolayer (membrane)

of surface shear viscosity ηs between two laterally infinitely extended viscous phases
(figure 1). The flow of the subphase is described by Stokes’ equation and the continuity
equation:

f − ∇p + η�u = 0,

∇ · u = 0,

}
(2.1)



The viscous drag of spheres and filaments 453

η2

Z

z = –d

η1 φxs

ηs

Figure 1. Sketch of a sphere immersed in a surface of viscosity ηs between two liquids
of infinite depth and viscosity η1 and η2.

where f is an external force, p is the lower-phase pressure, u denotes the subphase
velocity and

η(z) = η1Θ(−z) + η2Θ(z) (2.2)

is the viscosity that is η1 for z < 0 in the subphase and η2 for z > 0 in the upper phase.
Θ(z) is the Heaviside function. The dynamic stress tensor is given by

σ = −p1 + η(∇u + [∇u]t ), (2.3)

where 1 denotes the unit tensor in three-dimensional space. The monolayer (mem-
brane) surface A is assumed to be flat and located at the position z = 0 and no
deformation of the surface by e.g. electrocapillary effects (Nikolaides et al. 2002;
Danov, Kralchevsky & Boneva 2004) is assumed. Such an approximation is reasonable
if the viscous drag is small compared to capillary stresses (ηU/σs � 1, U being the
speed of the object, σs the tension of the monolayer/membrane). For optical tweezer
experiments in Langmuir monolayers typical values of this ratio are of the order of
ηU/σs ≈ 10−6. The tension of membranes is much lower than the air/water tension;
however, for membranes the liquid is usually the same on both sides leading to a
symmetric immersion in the membrane and deformations play no role for symmetry
reasons. The assumption of a flat interface is therefore reasonable for the case of
colloidal particles in Langmuir monolayers as well as for biological membranes. The
flatness of the interface under such conditions also leads to the effect that the rotation
of a sphere is strongly suppressed when it is immersed in it since rotation of a sphere
in a flat interface leads to a divergent stress near the contact line that forbids its
rotation (O’Neill, Ranger & Brenner 1986; Huh & Scriven 1971; Dussan V. & Davis
1974). Hence no rotation of the sphere occurs at the level of this approximation
once it touches the interface. The area of the surface of the three-dimensional object
touching the liquid or the monolayer is denoted by ∂O . At both surfaces, boundary
conditions have to be fulfilled. At the surface ∂O of the three-dimensional object,
the velocity of the liquid must coincide with the velocity U ex of the object (non-slip
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boundary condition):

u = U ex for x ∈ ∂O, (2.4)

while at the monolayer covered surface A, the flow can be approximated by an
incompressible two-dimensional Stokes flow:

∇s · us = 0 for xs ∈ A, (2.5)

uz(z = 0) = 0 for xs ∈ A, (2.6)

f s − ∇sπs + ηs�sus +

∥∥∥∥η∂u
∂z

∥∥∥∥
s

= 0 for xs ∈ A, (2.7)

where f s is an external surface force parallel to the monolayer (membrane) surface, πs

is the surface pressure, us is the surface velocity, and ∇s denotes the surface gradient.
The symbol ‖C‖s = C(z=+0) − C(z = −0) denotes the jump in C across the interface.

The approximation of the interface as incompressible is justified since surface
compression waves travel with the speed of surface phonons, which is much larger than
the speed of the object. Hence Marangoni forces are transmitted instantaneously in
this approximation. The cause of these Marangoni forces are small surfactant density
gradients that drop out of the equations in the limit of vanishing compressibility. The
incompressibility of the surface is a widely accepted approximation that has been
introduced in the work of Saffmann & Delbrück (1975), Hughes et al. (1981) and
Stone & Ajdari (1998). In the work of Danov et al. (1995, 2000) this approximation
has been replaced by the condition of a constant surface pressure that neglects the
Marangoni forces. The difference of the theory presented here to the work of Danov
et al. (1995, 2000) therefore is to put the theory of protruding objects into the same
framework as Saffmann & Delbrück (1975), Hughes et al. (1981) and Stone & Ajdari
(1998) who treat non-protruding objects at an interface.

The surface dynamic stress tensor is given by

σ s = −πs Is + ηs(∇sus + [∇sus]
t ). (2.8)

Here, Is = 1 − ezez denotes the projector onto the monolayer (membrane) surface. We
may construct a solution for an arbitrary object immersed in the bulk phases and the
interface from the solution for a point force source

f = F δ3(x − hez), f s = 0, (2.9)

located at a distance h from the monolayer (membrane) surface. The bulk solution
to (2.1) can be written as (Russel, Saville & Schowalter 1989)

u(x) =

∫
|R3/V

d3x ′O0(x − x ′) · f 0(x ′)

O0(r) =
1

8πη

(
1

r
+

r r
r3

)

p(x) =

∫
|R3/V

d3x ′ x − x ′

4π|x − x ′|3 · f 0(x ′)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

where O0 is the bulk Oseen tensor, r = x − x ′ is the vector pointing from x ′ toward
x, f 0(x ′) is a force density, which is non-zero on the complement of the volume
where the Stokes equation holds. Similarly, for a surface force f s in the monolayer
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(membrane) we find (Levine & MacKintosh 2002; Fischer 2003):

u(x) =

∫
|R2/A

d2x ′
sOs(x − x ′

s) · f s(x ′
s), (2.11a)

Os(r) =
4

8π(η1 + η2)

∞∑
n =0

(
Ba

∂

∂ |z|

)n[( |z|
r2
s

− z2

r2
s

(
r2
s + z2

)1/2

)

×
[
Is − r s r s

r2
s

]
+

(
r2
s + z2

)1/2 − |z|
r2
s

r s r s

r2
s

]
for z �= 0, (2.11b)

Os(r s) =
2r s r s − Isr

2
s

r2
s

1

4(η1 + η2)rs

{
H1

(
rs

Ba

)
− N1

(
rs

Ba

)
− 2Ba

πrs

}

+
r2
s Is − r s r s

r2
s

1

4(η1 + η2)Ba

{
H0

(
rs

Ba

)
− N0

(
rs

Ba

)}
, (2.11c)

πs(xs) =

∫
d2x ′

s

xs − x ′
s

2π|xs − x ′
s |2

· f s(x ′
s), (2.11d)

p(x) = 0, (2.11e)

where Hn, Nn are Struve functions, and Bessel functions of the second kind of the
order n (Gradshteyn & Ryshik 1981, § 8.550, 8.403),

B =
ηs

(η1 + η2)a
(2.12)

is Boussinesq’s number, a is a typical length scale of the 3D object, and xs = Is · x.
We would like to solve Stokes equation for a point force placed at a distance h from
the surface and subject to the boundary conditions (2.5)–(2.7) and (2.9). In order to
do so, we start with the ansatz

u(x) = Θ(z · z′)

∫
d3x ′O0(x − x ′) · f̃ (x ′) +

∫
d2x ′

sOs(x − x′
s) · f̃ s(x ′

s) (2.13)

with a bulk force of the form

f̃ (x) = Fδ3(x − hez) − [Is − ezez] · Fδ3(x + hez) + Gz(xs)ezδ(z). (2.14)

The Heaviside function Θ(z · z′) ensures that bulk forces only cause flow in the liquid
on the same side of the membrane as the force. The flow on the other side is caused
purely by surface forces in the membrane. The first term in (2.14) is the solution of
the inhomogeneous Stokes equation in the phase where the point force is located.
The second term is a virtual image force source chosen in such a way as to ensure
that the force and image force generate an incompressible flow (equation (2.5)) at the
surface z = 0. The third term, which satisfies equation (2.5), must be chosen such that
the normal component of the velocity (2.13) vanishes at the surface (equation (2.6)).
The second term in (2.13), which satisfies both equations (2.5) and (2.6), must then be
chosen to counterbalance the lateral surface forces generated by the first term. For
the determination of the force densities Gz and f̃ s, it is useful to change to Fourier
space,

â(q) =

∫
a(x)eiq·xd3x (2.15)

where we split the wave vector

q = qs + qzez (2.16)
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into components tangential and normal to the surface. It is also useful to note that
the surface Fourier transformation of any interfacial function can be written as

ǎ(qs) :=
1

2π

∫
â(q) dqz =

∫
a(xs, z =0)eiqs ·xs d2xs . (2.17)

Using these definitions we find

ˆ̃f (q) = (2 cos(qzh)Fz + Ǧz(qs))ez + 2i sin(qzh)Fs (2.18)

where Fs = Is · F and Fz = ez · F. The velocity and pressure are found as

û(q) =
1

ηq4
(q21 − qq) · ˆ̃f (q) + 2

q2
s Is − qs qs

(η1 + η2)q2q2
s (1 + Bqsa)

e−iqzε+qsε · ˇ̃f s(qs), (2.19a)

p̂(q) = i
q
q2

· ˆ̃f (q), (2.19b)

π̌s(qs) = i
qs

q2
s

· ˇ̃f s(qs), (2.19c)

Here ε is a small but positive length that ensures that the velocity is differentiable
at z = 0. The normal component of the velocity at z = 0 is found with the use of
equation (2.17):

ǔz(qs) =
1

4ηqs

(2(1 + qsh)e−qshFz + Ǧz(qs)) − i
1

4ηqs

2e−qshhqs · Fs . (2.20)

In order to satisfy equation (2.6) we must choose

Ǧz(qs) = 2e−qsh(ihqs · Fs − (1 + qsh)Fz). (2.21)

The surface velocity is entirely determined by the surface force f̃ s:

ǔs(qs) =
q2

s Is − qs qs

(η1 + η2)q3
s (1 + Bqsa)

· ˇ̃f s(qs). (2.22)

Fourier transformation of equation (2.7) with f s = 0 leads to

ˇ̃fs(qs) = e−qsh

[
iqsh

qsez

qs

+ Is

]
· F. (2.23)

Insertion of (2.18) and (2.23) into (2.19a) and inverse Fourier transformation leads to
(Appendix A)

u(x) =

∫
d3x ′[OM (xs − x ′

s, z, z
′) + OM

s (xs − x ′
s, z, z

′)
]

· Fδ3(x ′−hez), (2.24)

where

OM (r s, z, h) =
Θ(zh)

8πη

{
ozzezez + ozr

ezrs

rs

+ orz

r sez

rs

+ oisoIs + oaniso

[
2

r srs

r2
s

− Is

]}
,

OM
s (r s, z, h) =

1

8π(η1 + η2)

{
os

isoIs + os
aniso

[
2

r srs

r2
s

− Is

]}
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(2.25)
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and

ozz(rs, h, z) =

[
1

dm

+
(z − h)2

d3
m

− 1

dp

− z2 + h2

d3
p

− 6zh(z + h)2

d5
p

]
,

ozr (rs, h, z) = rs

[
z − h

d3
m

− z − h

d3
p

+
6zh(z + h)

d5
p

]
,

orz(rs, h, z) = rs

[
z − h

d3
m

− z − h

d3
p

− 6zh(z + h)

d5
p

]
,

oiso(rs, h, z) =

[
3

2dm

− (z − h)2

2d3
m

− 3

2dp

+
z2 + h2 + 4zh

2d3
p

− 3zh(z + h)2

d5
p

]
,

oaniso(rs, h, z) =

[
r2
s

2d3
m

− r2
s

2d3
p

+
3zhr2

s

d5
p

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.26a)

os
iso(rs, h, z) = 2

∫ ∞

0

dt e−t 1(
r2
s + (|z| + |h| + Bat)2

)1/2
,

os
aniso(rs, h, z) = 2

∫ ∞

0

dt e−t

[(
r2
s +

(
|z| + |h| + Bat)2

)1/2 − (|z| + |h| + Bat)
]2

r2
s

(
r2
s + (|z| + |h| + Bat)2

)1/2
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.26b)

where

dm =
√

r2
s + (z − h)2, dp =

√
r2
s + (z + h)2, (2.27)

with

r s = xs − x ′
s (2.28)

a vector in the monolayer plane.

3. Flow around cylindrical symmetric obstacles
Let us now restrict attention to flow caused by cylindrical symmetrical obstacles.

In these problems, the velocity and force field may be written as

u(x) = U [u0(xs/a, z/a)e+ + eiφu1(xs/a, z/a)ez + e2iφu2(xs/a, z/a)e−],

f (x ′) =
F

a2
[f0(x

′
s/a, h/a)e+ + eiφ′

f1(x
′
s/a, h/a)ez + e2iφ′

f2(x
′
s/a, h/a)e−],

⎫⎪⎬
⎪⎭ (3.1)

where e± = (ex ± iey)/
√

2 and ui, fi , i =0, 1, 2 are the real components of the velocity
and force in terms of the basis e±, ez. The velocity and force vectors are complex
and we regain real vectors by adding or subtracting the complex conjugate solutions.
Substituting γ = φ − φ′ we arrive at⎛

⎝u0

u1

u2

⎞
⎠ =

∫ ∞

−∞
dh

∫ ∞

0

dx ′
sx

′
s

∫ π

−π

dγ
[
OM + OM

s

]
·

⎛
⎝f0

f1

f2

⎞
⎠ (3.2)
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where the components of Oseen’s tensor in this basis are

8πηOM=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

oiso

orz√
2

xs cos γ − x ′
s

rs

oaniso

(
1 − 2x2

s sin2 γ

r2
s

)
ozr√

2

xs − x ′
s cos γ

rs

ozzcosγ
ozr√

2

xs cos 2γ − x ′
s cos γ

rs

oaniso

(
1 − 2x ′

s
2 sin2 γ

r2
s

)
orz√

2

xs cos γ − x ′
s cos 2γ

rs

oiso cos 2γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.3)

where

rs =
√

(xs + x ′
s)

2 − 4xsx ′
scos2γ /2. (3.4)

An equation similar to (3.3) holds for OM
s . The integration over γ

Ō
M

(xs, z|x ′
s, h) :=

∫ π

−π

dγOM (3.5)

may be performed analytically and the rather lengthy result is tabulated in
Appendix A.

We want to find the force profile that the object exerts on the fluid when it is
moving with velocity U e+ and rotating around its centre zc with angular frequency
−iΩe+. We find

u0 = (U − iΩ(z(t) − zc))

u1 = iΩρ(t)/
√

2
u2 = 0

⎫⎬
⎭ for (xs, z) ∈ ∂O, (3.6)

ui(t) =

∫ tmax

tmin

ρ(t ′) ds(t ′)
[
Ō

M

ij (ρ(t), z(t)|ρ(t ′), z(t ′)) + Ō
M

min(ρ(t), z(t)|ρ(t ′), z(t ′))
]

· fj (t
′),

(3.7)
where

∂O := {xs, z| with xs = ρ(t), z = z(t), tmin < t < tmax} (3.8)

is an arbitrarily chosen parametrization of the contour of the cylindrical symmetric
surface ∂O of the object and

ds(t ′) =
√

(dρ/dt ′)2 + (dz/dt ′)2 dt ′ (3.9)

is the arclength increment corresponding to the parametrization. Equations (3.6)
and (3.7) define a one-dimensional integral equation on ∂O for the three unknown
components of the force profile on the surface of the sphere. It can be solved
numerically, by discretizing the integral, which converts the integral equation into a
matrix equation (Appendix B). Inversion of the matrix then yields the force profile.
The drag force F drag e+ is then given by

F drag =

∫ tmax

tmin

2πρ(t ′) ds(t ′) f0(t
′) (3.10)
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and the drag torque −iT drage+ equals†

T drag =

∫ tmax

tmin

2πρ(t ′) ds(t ′) [(z(t ′) − zc) f0(t
′) − ρ(t ′) f1(t

′)/
√

2]. (3.11)

The drag force and torque are connected to the velocity U and angular frequency Ω

via ⎛
⎜⎜⎝

F drag

η1a2

T drag

η1a3

⎞
⎟⎟⎠ =

(
kT kC

kC kR

)
·
(

U

a
Ω

)
. (3.12)

Numerically solving the integral equation (3.7) for Ω = 0 yields the coefficients kT

and kC , while setting U =0 yields the force profile for the rotational coefficients.

4. Results and discussion
4.1. large Boussinesq number

For high surface shear viscosity, the components of the surface Oseen tensor simplify
and we find (Appendix A)

limB→∞ ōM
s00 =

4π

Ba

(
ln

2Ba

|z| + |h| +
√

(xs + x ′
s)

2 + (|z| + |h|)2
− γ

)
+ o(1/B),

limB→∞ ōM
s22 = limB→∞ ōM

s02 = o(1/B2),

⎫⎪⎬
⎪⎭ . (4.1)

If the object is immersed in the interface, the integral equation (3.7) is solved by a
force density profile that is concentrated at the interface:

limB→∞ f0(h) = 2(η1 + η2)aUδ(h)
B

ln Ba/as − γ
+ o(B0),

limB→∞ f1 = limB→∞ f1 = o(B0),

⎫⎬
⎭ (4.2)

where as = ρ(0) defines the radius of the cylindrical symmetric object at the interface.
The drag force is given by

limB→∞ Fdrag =4π(η1 + η2)aU
B

ln Ba/as − γ
. (4.3)

If the object is a sphere of radius a then as/a = sin Θ with Θ the contact angle of
the liquid interface with the sphere.

4.2. Filaments

The result (4.3) holds for any object that protrudes into the surface with a protrusion
of depth l that is of the order of the interfacial radius as . It differs only slightly
from the result of Saffmann & Delbrück (1975) derived for non-protruding objects.‡

† All quantities, F drag, U , −iT drag, and −iΩ are understood as coordinates with respect to the
basis vector e+. The coupling coefficients are real and the factor −i in front of the angular velocity
and torque indicate that they point in a direction rotated by π/2 around the z-axis with respect to
the direction of the force and the velocity.

‡ Equation (4.3) differs from Saffman & Delbrück’s original result in that in the denominator
ln(2B) is replaced by ln(B sin θ ), the factor 2 in the logarithm of Saffman & Delbrück’s result arises
since there the entire disk is immersed into the interface, while our result holds for objects with
only the rim of radius as cutting the surface.
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If an object protrudes much further into the subphase (l � a) the force density
on the surface of the object in the subphase, although of o(B′0), might add up
to a comparable total drag when integrated over the comparably long protrusion.
The geometry considered in this subsection therefore is that of an elongated highly
anisotropic polymer or filament protruding normal to the membrane into one of the
bulk phases and touching the membrane with one of its ends. The requirement of
large protrusion is fulfilled if we have a � l, where a is the radius of the filament,
l its length and B′ = ηs/ηa the Boussinesq number defined in terms of the radius
of the filament. As in the previous section we exclusively consider high Boussinesq
numbers B′ � 1. An experimentally relevant example of such a configuration is
microvilli. Microvilli are short or long finger-like extensions from the cell surface
that are responsible for the dynamic assembly of sceletal infrastructure of the cell
membrane as well as for the membrane motion on the microscopic scale. The core of
the microvilli is made up of a group of actin microfilaments which interdigitate with
a band of microfilaments just below the cell membrane. These microfilaments are
about 3–6 nm in diameter (Mercier et al. 1989). They not only provide a sceletal core
to maintain the structure of the microvilli but they are also believed to be responsible
for providing a mechanism for passage of nutrients across the cell membrane when
they interact with the myosin. The drag on filaments is important when calculating
the power consumption required for a short-range diffusive motion of such microvilli
(Manneville et al. 2003). However, the hydrodynamic derivation given here is more
general and also applies to other realization of this geometry such as the motion of
nano-rods or rigid fibres in a membrane or a monolayer.

In the limit of vanishing radius of the filament only the 00-component of the Oseen
tensor is relevant. The parametrization of the filament is given by ρ(z) = a → 0 and
the Oseen tensor component simplifies to

lim
a→0

ōM
00 =

{
0 if z = 0,

8π ln(l/2a)δ(z − h) if z, h>a,
(4.4a)

lim
a→0

ōM
s00 =

⎧⎪⎪⎨
⎪⎪⎩

4π

B′a
(ln B′ − γ ) if z = 0

−32π

B′a
exp

(
z + h

B′a

)
Ei

(
− z + h

B′a

)
if z + h >a,

(4.4b)

where Ei(x) is the exponential integral function. The integral equation (3.7) is then
solved by

f0(h) = 2(η1 + η2)aUδ(h)
B′

ln B′ − γ
+

η1U

ln l/2a

(
1 − 8

eh/B′aEi(−h/B′a)

ln B′ − γ

)
. (4.5)

The drag force is obtained using (3.10):

kT =
F drag

(η1+η2)aU

=

(
4πB′

ln B′ − γ
+

2πη1B′

(η1+η2) ln(l/2a)

(
l

aB′ +8
ln(l/B′a)+γ − el/B′aEi(−l/B′a)

ln B′−γ

))
.

(4.6)

Figure 2 shows equation (4.6) for a filament attached to a monolayer (η2 = 0) as
a function of the Boussinesq number. There is a crossover from a drag strongly
depending on the aspect ratio l/a but almost independent of B′ at low Boussinesq
numbers toward a drag strongly depending on the Boussinesq number B′ but
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Figure 2. Numerical solution for the drag coefficients of a filament piercing a monolayer
(η2 = 0) as a function of the Boussinesq number B′ for different aspect ratios l/a of the
filament.

independent of the aspect ratio l/a at high Boussinesq number. The drag force
becomes protrusion dominated for l/a > B′ and is dominated by the surface viscosity
in the opposite case. The crossover from protrusion dominated to surface viscosity
dominated drag occurs at the knee of the curves that is located roughly at B′ ≈ l/a.

4.3. Spheres

Let us now consider the problem of a sphere of radius a immersed in the flat interface
with its north pole at a distance d from the interface. We parametrize the surface of
the sphere as

∂S := {x ′
s, h
∣∣ with x ′

s = ρ(h) zmin < h < zmax},

ρ(h) =
√

a2 − (h − zc)2,

}
(4.7)

where

zmin = d, zc = d + a, zmax = d + 2a (4.8)

and

ρ(h) ds(h) = a dh. (4.9)

The inversion of (3.7) is well-behaved for the f0-component and for the f1-component
if none of the poles of the sphere touches the surface (d �≈ −2a and d �≈ 0). If the
sphere touches the monolayer (membrane), the force profile of the rotational problem
U = 0 exhibits a singularity in the f1-component near the contact line (O’Neill et al.
1986; Huh & Scriven 1971; Dussan V. & Davis 1974):

f1(h → 0) =
τ

h
. (4.10)

This singularity arises since the no slip condition cannot be sustained close to the
three-phase contact line. It leads to a logarithmic singularity of the torque. We do



462 T. M. Fischer, P. Dhar and P. Heinig

60

kT

kR

kC

40

20

D
ra

g 
co

ef
fi

ci
en

t

0

10–1 1

Distance, d/a

10
–20

Figure 3. Numerical solution for the drag coefficients (black dots) as a function of the distance
of the north pole from the interface for infinite Boussinesq number. The grey lines are fits to
the numerics according to Faxen (1923).

not remove the singularity and therefore obtain kR = ∞ as soon as the sphere touches
the interface. The results for a sphere immersed in the interface at high Boussinesq
numbers follows from the discussion in § 4.1.

4.4. Sphere fully immersed in the subphase adjacent to a large-Boussinesq-number
interface

If the sphere is not immersed in the interface and the Boussinesq number is large,
then we can neglect the surface Oseen tensor and we are left with the Oseen tensor
of a rigid interface. Hence we recover the results for a sphere moving close to a solid
wall (Faxen 1923). Figure 3 displays the translational, rotational and coupling drag
coefficients obtained from our numerics. The solid lines are the analytical solutions
by Faxen (1923) obtained with the method of reflections. The numerics reproduces
Faxen’s results.

4.5. Low Boussinesq number

For small Boussinesq number we expand both the surface Oseen tensor and the force
density into a series in the Boussinesq number:

OM =OM(0) + BOM(1) + o(B2),
f = f (0) + B f (1) + o(B2).

}
(4.11)

Sorting equation (3.2) into different orders in the Boussinesq number we obtain

u =

∫
OM(0) · f (0), (4.12a)

−
∫

OM(1) · f (0) =

∫
OM(0) · f (1). (4.12b)

By successively inverting the series of equations (4.12) we obtain the coefficients in
the series in B of the force (4.11) and hence a series in B for the friction coefficients.
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Figure 4. Numerical solution for the drag coefficients (black dots) as a function of the distance
of the north pole from the monolayer surface for zero Boussinesq number. The grey lines are
fits to the numerics according to equations (4.13). The coupling coefficieents do not converge
near d ≈ 0 and d ≈ −2a, since the series expansion in the Boussinesq number of Oseen’s tensor
no longer converges for B → 0. No numerical data are shown in these regimes.

The radius of convergence of the series of the force shrinks to zero with the radius
of the three-phase intersection line. For a disk lying flat in the interface a convergent
series with logarithmic corrections incorporated exists; however the power series
diverges. In the following sections we numerically compute the solutions to the drag
coefficients in linear order of the Boussinesq number (k = k(0)+Bk(1)+o(B2)) avoiding
immersion depths of the sphere where the north or south pole touches the interface.

4.6. Sphere in a monolayer

Figure 4 shows the numerical result for the drag coefficients k
(0)
T , k

(0)
C , and k

(0)
R for zero

Boussinesq number as a function of the immersion depth of the bead in a non-viscous
(ηs = 0) monolayer on a liquid (η1)/air (η2 = 0) interface. The translational, rotational
and coupling drag are fitted with an accuracy of 3% by the formula

k
(0)
T ≈ 6π

√
tanh[32(d/a + 2)/(9π2)], (4.13a)

k
(0)
R ≈

{
8π − 5 ln (tanh(3d/2a)) for d > 0
∞ for d < 0,

(4.13b)

k
(0)
C ≈

(
4(d/a + 2)1/2 + 16(d/a + 2)3/2

)
e−3(d+2a)/2a. (4.13c)

All drag coefficients approach their correct theoretical values kT =6π, kC =0, and
kR = 8π when the sphere is far away from the surface (d → ∞) (Happel & Brenner
1983). For d → −2a the translational and coupling drag coincides with that of a disk
of radius aD =

√
2a(d + 2a) immersed in a monolayer (Hughes et al. 1981).

The translational drag monotonically increases with the immersion depth of the
sphere. Both coupling coefficients are positive and equal within the error margins of
the numerics. A torque-free sphere will hence rotate in the opposite sense, as if the



464 T. M. Fischer, P. Dhar and P. Heinig

20

15

10

k
R
(1)

k
T
(1)

k
C
(1)

5

D
ra

g 
co

ef
fi

ci
en

t

0

–5

–2 –1

–10

0
Distance, d/a

1 2

Figure 5. Numerical solution for the first-order correction to the drag coefficients (black dots)
as a function of the distance of the north pole from the monolayer surface. The grey lines are
fits to the numerics according to equations (4.14). The coupling coefficients do not converge
near d ≈ 0 and d ≈ −2a, since the series expansion in the Boussinesq number of Oseen’s tensor
no longer converges for B → 0. No numerical data are shown in these regimes.

sphere were rolling on the monolayer surface. No discontinuity is observed in the
translational and coupling drag when the sphere detaches from the monolayer surface
as it is fully immersed in the liquid. However, the rotational drag logarithmically
diverges. Because of the divergence of the rotational drag in spite of the asymmetry
of the problem, a torque-free sphere will hardly rotate when one applies a force to
one in contact with the monolayer.

Figure 5 shows the numerical result for the first-order correction of the drag coeffi-
cients k

(1)
T , k

(1)
C and k

(1)
R as a function of the immersion depth of the sphere. The trans-

lational, rotational and coupling drag is fitted with an accuracy of 3% by the formula

k
(1)
T ≈

⎧⎪⎪⎨
⎪⎪⎩

−4 ln

(
2

π
arctan

(
2

3

))
a3/2

(d + 3a)3/2
for d > 0

−4 ln

(
2

π
arctan

(
d + 2a

3a

))
for d < 0,

(4.14a)

k
(1)
R ≈

⎧⎨
⎩

a2

(d + a)2
for d > 0

∞ for d < 0,

(4.14b)

k
(1)
C ≈ − 1.2

cosh(3d/2a)
for d > 0. (4.14c)

All drag coefficient corrections vanish when the sphere is far away from the surface
(d → ∞) (Happel & Brenner 1983). The corrections k

(1)
T and k

(1)
R are both positive,

indicating that the surface shear viscosity increases both the translational and
rotational drag. The correction to the coupling coefficient is negative and of opposite
sign to the leading term. When on a non-viscous surface the sphere would prefer
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Figure 6. Iso-translational-friction lines in the (d, B)-plane for kT = 10, 11, ...19, 100, 200. An
experiment revealing a friction coefficient of 16 can be interpreted to result (a) from an
immersion of the sphere or (b) from surface viscous contributions.

to rotate in the opposite direction as if rolling on the monolayer; the viscous
contribution of the monolayer supports rotation in the same sense as if rolling on
the surface. The translational drag monotonically increases with the immersion depth
of the sphere. Both coupling coefficients are equal within the error margins of the
numerics. No discontinuity is observed in the translational and coupling drag when
the sphere detaches from the monolayer surface as it is fully immersed in the liquid.
However, the rotational drag logarithmically diverges. Because of the divergence of
the rotational drag in spite of the asymmetry of the problem, a torque-free sphere
will hardly rotate when one applies a force to one in contact with the monolayer.

The translational drag on a half-immersed sphere k
(0)
T ≈ 11.7 in a non-viscous

monolayer is about 25% larger than the drag on a non-rotating sphere immersed
in a free surface kT =3π. This is in excellent agreement with the estimate by Stone
(2005, personal communication) using a perturbative expansion in the protrusion.
The incompressibility (equation (2.5)) leads to corrections to the drag on a free
surface (Danov et al. 1995, 2000) that are similar in magnitude to experimentally
observed deviations (Petkov et al. 1995; Sickert & Rondelez 2003, 2004) which
have been attributed to surface viscous damping and viscosity of water that was
renormalized by 30%. A variation in immersion depth, and a variation of drag
caused by the Marangoni effect, however, are alternative sources of drag increase
that cannot be easily ruled out in the experiments. Such variations in depth have
been predicted to arise due to electrocapillary effects for micron-sized spheres by
Nikolaides et al. (2002). Electrocapillary effects have been confirmed by Danov et al.
(2004) by measurements on large ( 100 micrometer sized) beads. Electrocapillary
effects are predicted to be most pronounced for small spheres with diameter at
or below the microscopic resolution limit. Our calculations, although neglecting
the deformation of the surface caused by the electrocapillary effects, can be an
indirect way of determining the effective immersion of spheres in the interface
from the increase or decrease in mobility with respect to the mobility of a sphere
immersed at its contact angle in a flat interface. In figure 6 we plot lines of
equal friction for spheres immersed in a viscous monolayer in the (d, B)-plane.
As can be seen, a translational friction constant of kT = 15 as measured on the
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Figure 7. Numerical solution for the drag coefficients (black dots) as a function of the distance
of the north pole from the membrane surface for zero Boussinesq number. The grey lines are
fits to the numerics according to equation (4.15). The coupling coefficients do not converge
near d ≈ 0 , since the series expansion in the Boussinesq number of Oseen’s tensor no longer
converges for B → 0. The data are displayed on a linear scale for the immersion depths when
the sphere touches the membrane and on a logarithmic scale when the sphere is fully immersed
in one of the phases.

simple air–water interface by Sickert & Rondelez (2003, 2004) is compatible with
a deeply immersed sphere d ≈ −0.25a on an impure and therefore incompressible
surface. No renormalization of the viscosity of water is necessary to explain their
observation. On discarding the viscosity renormalization and using our theory with
the proper viscosity of water the measurements of the diffusion of colloidal beads in
various monolayers of Sickert & Rondelez (2003, 2004) are explained with surface
shear viscosities of ηs ≈ 0.3 × 10−9 N s m−1 which is the same order of magnitude
as Sickert & Rondelez (2003, 2004), found using a renormalized bulk viscosity.

4.7. Sphere in a membrane

Figure 7 shows the numerical result for the drag coefficients k
(0)
T , k

(0)
C , and k

(0)
R for zero

Boussinesq number as a function of the immersion depth of the bead in a non-viscous
(ηs = 0) membrane between two liquids of similar viscosity (η1 = η2). The data are
displayed on a linear scale for the immersion depths when the sphere touches the
membrane and on a logarithmic scale when the sphere is fully immersed in one of
the phases.

The translational, rotational and coupling drag is fitted with an accuracy of 3% by
the formula

k
(0)
T ≈ 6π +

3π/2

1 + (d/a + 1)2
, (4.15a)

k
(0)
R ≈

{
8π +3| ln(tanh(d/a))|3/2 for d > 0
∞ for d < 0,

(4.15b)

k
(0)
C ≈ πe−(d/a + 1) + 0.009a2/d2. (4.15c)
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Figure 8. Numerical solution for the first-order corrections to the drag coefficients (black
dots) as a function of the distance of the north pole from the membrane surface. The coupling
coefficients do not converge near d ≈ 0 , since the series expansion in the Boussinesq number
of Oseen’s tensor no longer converges for B → 0. The data are displayed on a linear scale
for the immersion depths when the sphere touches the membrane and on a logarithmic scale
when the sphere is fully immersed in one of the phases.

All drag coefficients approach their correct theoretical values kT =6π, kC =0, and
kR = 8π when the sphere is far away from the surface (d → ∞) (Happel & Brenner
1983).

The translational drag is maximal when the sphere is symmetrically immersed
in both phases with the equator coinciding with the membrane plane. The drag
monotonically decreases when moving to either side. The two coupling coefficients
are equal within the error margins of the numerics. No discontinuity is observed in the
translational drag when the sphere detaches from the membrane surface as it is fully
immersed in one liquid. However, the rotational drag logarithmically diverges. The
translational drag on a half-immersed sphere k

(0)
T ≈ 15π/2 is 25% larger than the drag

on a non-rotating sphere immersed in a free surface k
(0)
T = 6π. The incompressibility

(equation (2.5)) leads to corrections to the drag on a free surface (Danov et al. 1995,
2000) that are similar in magnitude to experimentally observed deviations (Dimova
et al. 1999a, b, 2000) which have been attributed to surface viscous damping. A
variation in immersion depth, and a variation of drag caused by the Marangoni
effect, however, are alternative sources of drag increase that cannot be easily ruled
out in the experiments.

Figure 8 shows the numerical result for the first-order corrections to the Boussinesq
number of the drag coefficients k

(1)
T , k

(1)
C , and k

(1)
R as a function of the immersion depth

of the bead in a membrane between two liquids of similar viscosity (η1 = η2). The data
are displayed on a linear scale for the immersion depths when the sphere touches the
membrane and on a logarithmic scale when the sphere is fully immersed in one of
the phases.
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The translational first-order correction k
(1)
T exhibits a maximum when the sphere

is positioned with its equator in the membrane. It continuously changes as the
sphere detaches from the membrane and drops to zero when it is far away from
the membrane. The first-order correction to the rotational drag k

(1)
R is rather weak

when compared with the leading order and a slightly viscous membrane does not
change the rotational torque. The first-order coupling correction k

(1)
C acts opposite to

the leading order because the viscous membrane exerts a force that rolls the sphere
on the membrane, while in the non-viscous case the sphere tends to roll on the bulk
phase into which the sphere protrudes more.

It is clear from the calculations that a fully immersed sphere with 0<d � a, rigidly
coupled to a flat solid disk (raft) of radius aD � a will not experience a translational
drag significantly different to that of a sphere touching the monolayer with its north
pole d ≈ 0. It will not be possible to use a sphere with radius much bigger than
the disk (raft) to detect the hydrodynamic radius of the disk. The hydrodynamic
radius of lipid rafts found in Pralle et al. (2000) is presumably much larger than their
estimate. It is therefore necessary to calculate the drag on spheres in or close to a
membrane/monolayer analytically. Here we have done this for a viscous monolayer
coupled to an infinitely deep subphase on one side of the monolayer and for a viscous
membrane with the same viscous liquid on both sides of the membrane.

5. Conclusions
The drag on a sphere immersed and moving in an incompressible viscous monolayer

on a viscous infinitely deep subphase is calculated numerically. On a membrane or
monolayer of low viscosity the viscous drag is larger than on a free surface. A
small protrusion of the object alters the drag at low surface shear viscosities. At
high viscosities effects of protrusion are only relevant if the protrusion is larger
than l > ηs/(η1 + η2) which applies for objects like filaments or nano-rods. Simple
analytical expressions for the drag coefficients are given in various limiting cases
for spheres and for filaments, which coincide with the numerical result within 3%.
In a monolayer the drag increases monotonically with the depth of immersion of
the sphere. Rotation of the sphere can be neglected when the size of the sphere is
large compared to the thickness of the monolayer and when the sphere touches the
monolayer. No discontinuity of the drag arises when the sphere is totally immersed in
the subphase and detaches from the monolayer. The drag in a membrane decreases as
the sphere is displaced out of its equatorial position. The Marangoni effect is an essen-
tial feature for the analysis of surface viscous properties using colloidal particle trac-
king techniques. Applying our numerical derivations to experiments of Sickert &
Rondelez (2003, 2004) results in similar surface shear as derived in their work;
however the results are achieved without unphysical renormalization of the bulk
viscosity. Experimental results of Sickert & Rondelez (2003, 2004) on the diffusion of
colloidal particles on bare but impure air/water interfaces that could not be explained
with the theory of Danov et al. (1995, 2000) are explained within the framework of
our theory. The hydrodynamic radii of membraneous domains measured by the drag
of domain-coupled spheres are orders of magnitude larger than anticipated in the
work of Pralle et al. (2000). Our calculations can be used for the measurement of
electrocapillary immersion forces on spheres in a monolayer.

We thank Howard Stone for sharing his calculation on the mobility of protruding
ellipsoids.
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Appendix A. Oseen tensor in direct space
Here we outline the inverse Fourier transform leading to Oseen’s tensor in direct

space (equations (2.25) and (2.26)) and the angular integrals leading to the Oseen
tensor for axial symmetric objects (equations (3.5) and (A 15)–(A 20)). The inverse
Fourier transform is performed in cylindrical coordinates:

OM (r) =
1

(2π)3

∫ ∞

0

qs dqs

∫ π

−π

dψ

∫ ∞

−∞
dqze

−iqzz−iqsrs cos(ψ)Ô
M

(q) (A 1)

where we have writen equation (2.19) as

û(q) = Ô
M

(q) · F. (A 2)

The explicit expression for Ô
M

(q) satisfying the boundary conditions (2.5)–(2.7) and
(2.9) is obtained after insertion of equations (2.18), (2.21) and (2.23) into (2.19). The
expression (1 + Bqsa)−1 in the surface Oseen tensor is rewritten as

T̂B(q) = (1 + Bqsa)−1 =

∫ ∞

0

dt e−te−Bqsat . (A 3)

The integration over qz involves integrals of the type:

1

2π

∫ ∞

−∞
dqze

−iqzz
1

q2
z + q2

s

= 2
e−qsz

4qs

, (A 4a)

1

2π

∫ ∞

−∞
dqze

−iqzz
qz

q2
z + q2

s

= −2iqz

e−qsz

4qs

, (A 4b)

1

2π

∫ ∞

−∞
dqze

−iqzz
1(

q2
z + q2

s

)2 =
1 + qsz

q2
s

e−qsz

4qs

, (A 4c)

1

2π

∫ ∞

−∞
dqze

−iqzz
qz(

q2
z + q2

s

)2 = −iz
e−qsz

4qs

, (A 4d)

1

2π

∫ ∞

−∞
dqze

−iqzz
q2

z(
q2

z + q2
s

)2 = (1 − qsz)
e−qsz

4qs

. (A 4e)

From (A 3) and the first line of (A 4) we see that multiplication with T̂B(q) in Fourier
space translates into a linear operator:

OM
s (r s, |z| + |h|, B) = TB

{
OM

s (r s, |z| + |h|, B =0)
}

=

∫ ∞

0

dt e−tOM
s (r s, |z| + |h| + Bat, B = 0) (A 5)

in real space. If OM
s (r s, |z| + |h| + Bat, B = 0) is a function that may be expanded in

a Taylor series in its second argument around |z| + |h| we find that

TB =

∞∑
n= 0

(
Ba

∂

∂ |z|

)n

. (A 6)

The integration over the polar angle involves integrals of the form

1

(2π)2

∫ π

−π

dψe−iqsrs cosψ =
1

2π
J0(qsrs), (A 7a)

1

(2π)2

∫ π

−π

dψe−iqsrs cos ψ qs

qs

=
−i

2π
J1(qsrs)

r s

rs

, (A 7b)
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1

(2π)2

∫ π

−π

dψe−iqsrs cosψ qsqs

q2
s

=
1

2π
J0(qsrs)

r r
r2

+
1

2π

J1(qsrs)

qsrs

[
Is − 2

r s r s

r2
s

]
, (A 7c)

where Jn(qsrs) are Bessel functions of the first kind of order n, and the integral over
the lateral component of the q-vector leads to integrals of the form

Imν :=

∫ ∞

0

dqsq
m−1
s e−qsζ Jν(qsrs) =

(−1)m

νrν
s

dm

dζm

(√
ζ 2 + r2

s − ζ
)ν

. (A 8)

Specifically one finds

I10 =
1√

ζ 2 + r2
s

, I20 =
ζ√

ζ 2 + r2
s

3
, I30 =

2ζ 2 − r2
a√

ζ 2 + r2
s

5

I01 =

√
ζ 2 + r2

s − ζ

rs

, I11 =
1

r
− ζ

rs

√
ζ 2 + r2

s

, I21 =
r√

ζ 2 + r2
s

3
, I31 =

3ζ r√
ζ 2 + r2

s

5
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A 9)

Application of the steps outlined in this appendix to the inverse Fourier transform of
(A 2) directly leads to (2.25) and (2.26).

The integration over the azimuthal angle γ in (3.5) lead to integrals of the type
(Gradshteyn & Ryshik 1981, § 3.681)∫ π/2

0

dβ
sin2n β cos2m β

(1 − k2 sin2 β)(l +1/2)
=

1

2
B(n+ 1/2, m +1/2)F (l + 1/2, n+ 1/2, n+ m +1, k2).

(A 10)

Using the three relations (Abramowitz & Stegun 1984, § § 15.2.3 and 15.2.6)(
d

dz

)n

za + n−1F (a, b, c; z) =
Γ (a + n)

Γ (a)
za−1F (a + n, b, c; z), (A 11a)(

d

dz

)n

zb + n−1F (a, b, c; z) =
Γ (b + n)

Γ (b)
zb−1F (a, b + n, c; z), (A 11b)(

d

dz

)n

(1 − z)a + b−cF (a, b, c; z) =
Γ (c − a + n)Γ (c − b + n)Γ (c)

Γ (c − a)Γ (c − b)Γ (c + n)

×(1 − z)a + b−c−nF (a, b, c + n; z), (A 11c)

the hypergeometric function can be written as a derivative of the complete elliptic
integral of the first kind:

K(k) =

∫ π/2

0

dβ√
1 − k2 sin2 β

=
π

2
F (1/2, 1/2, 1, k2). (A 12)

Derivatives for complete elliptic functions are given in Gradshteyn & Ryshik (1981,
§ 8.123). The integral for oM

s02 and ōM
s20 also involves the complete elliptic integral of

the third kind. We find

ōM
00 =

6

dpm

K ′
(

dmm

dpm

)
− 2(z − h)2

dpmd2
mm

E′
(

dmm

dpm

)
+

(
− 6

dpp

+
4zh(z + h)2

d3
ppd2

mp

)
K ′
(

dmp

dpp

)

+

(
2z2 + 2h2 + 8zh

dppd2
mp

− 8zh(z +h)2

d3
ppd2

mp

− 8zh(z + h)2

dppd4
mp

)
E′
(

dmp

dpp

)
, (A 13)
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ōM
s00 = TB

{
8

dpp

K ′
(

dmp

dpp

)}
, (A 14)

ōM
01 =

2
√

2(z − h)(xs − x ′
s)

dpmd2
mm

E′
(

dmm

dpm

)
− 4

√
2xs(z − h)

d3
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D′
(

dmm

dpm

)
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√
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−8
√
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+
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√
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d3
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mp
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× E′
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dmp
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)
+

(
4

√
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d3
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+
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√
2zhxs(z + h)

d5
pp

)
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(
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)

+
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2zh(z +h)(xs − x ′
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(
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)
, (A 15)

ōM
02 =
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dpm
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64x2
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, (A 16)

ōM
s02 = TB

{(
− 8x2

s
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2

−
8
(
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)
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, (A 17)
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, (A 18)
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√
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+
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√
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ōM
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3dpp

(
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(

dmp

dpp

)
− D′

(
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, (A 21)

where

dpm =
√

(xs + x ′
s)

2 + (z − h)2, dmm =
√

(xs − x ′
s)

2 + (z − h)2,

dmp =
√

(xs − x ′
s)

2 + (|z| + |h|)2, dpp =
√

(xs + x ′
s)

2 + (|z| + |h|)2.

}
(A 22)

E(x, k) and F (x, k) are the incomplete elliptic integrals of the first and second kind,
E′(k) and K ′(k) the complementary complete elliptic integrals of the first and second
kind; and D′(k) = (K ′(k) − E′(k))/(1 − k2), and C ′(k) = (D′(k) − E′(k)/2)/(1 − k2) are
linear combinations of E′ and K ′ that do not exhibit singularities near k = 1. The
remaining components of Oseen’s tensor are found from the symmetry relation:

ōM
ij (xs, z

∣∣x ′
s, h) = ōM

ji (x
′
s, h
∣∣xs, z). (A 23)

The expression for the surface Oseen tensor for B → ∞ is obtained by using the
identity (A 5) for the operator TB:

lim
B→∞

ōM
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Ba

∫ ∞
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dt e−t 8√
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2

(Ba)2
+ t2
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= lim
B→∞
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]
(A 24)

which is identical to the first line of (4.1). The second line of (4.1) is obtained along
analogues steps. Setting xs + x ′

s = 0 in the second line in (A 24) leads to the result (4.4)
given for lima→0 ōM

s00 when z + h>a.

Appendix B. Numerics

The axial Oseen tensor Ō
M

(xs, z
∣∣x ′

s, h) has logarithmic singularities for xs = x ′
s

z = h, which disappear after integration over the force profile. When discretizing the
problem, that is, setting

f (h) = f s for hs − ζ/2 <h<hs + ζ/2 (B 1)

a simple way of tackling these singularities is to replace the dmm (equation (A 22)) in
equations (15)–(A 20) by

dζ
mm =

√
(xs − x ′

s)
2 + (z − h)2 +

ζ 2(1 + (dρ/dz)2)

e3
. (B 2)

This removes the singularities and we can approximate the integral (3.7) by

ρrζui,r = Aij,rsfj,s, (B 3)

where Aij,rs is a matrix given by

Aij,rs =

∫ zr + ζ/2

zr −ζ/2

∫ hs + ζ/2

hs−ζ/2

ρ(z)Ōij (ρ(z), z|ρ(h), h)ρ(h) dz dh

≈ ζ 2ρrρsŌ
ζ

ij (ρ(zr ), zr

∣∣ρ(hs), hs) (B 4)

and Ō
ζ

ij is the Oseen tensor with argument dζ
mm instead of dmm. The matrix A is

symmetric and numerical inversion then yields the force profile:

fj,s =(A−1)ji,srρrζui,r . (B 5)

The derivatives of the surface Oseen tensor components (A 14), (A 17) and (A 21)
with respect to |z| occurring in the Taylor expansion are performed numerically. The
inversion of equation (4.12b) is then analogous to that of (4.12a).
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